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In our study, we investigated water droplet dynamics by varying the flow rate. Using two photo
gates, we observed period bifurcation and chaos in the time intervals between successive droplets.
Changes in the flow rate led to transitions in temporal patterns, illustrating the periodic and chaotic

behavior inherent in droplet flow.

I. INTRODUCTION

The aim of our experiment is to illustrate period-
doubling behavior and the transition into the chaotic
regime through varying the flowrate of water droplets
from a nozzle. Interestingly, we observed a situation
where it appeared that pure period doubling did not oc-
cur; instead, some periods collapsed into one another,
reminiscent of chaotic systems like Van der Pol oscilla-
tions [2]. Despite the challenge of adjusting the bifurca-
tion parameter, we achieved a relatively good representa-
tion. We calculated the Feigenbaum constant as 5.9 for
our water droplet system.

II. THEORY

Chaos refers to a state of apparent randomness and
unpredictability in a system. Studying chaos reveals
the inherent complexity of various systems, where small
changes to initial conditions can lead to significantly dif-
ferent outcomes. In this experiment, we investigate the
chaos arising from a common household occurrence — a
leaky faucet. The repetitive drip of water from a leaky
faucet may seem routine, but it conceals a fascinating
aspect of nonlinear dynamics and chaos. Recognized as
a chaotic system in 1982 [2], the experiment provides
an avenue to explore the chaotic patterns emerging from
water droplets falling. By observing the time intervals
between water droplets falling as we tighten or loosen
our ‘faucet’, we observed a period-doubling effects where
periods may become very short as droplets fall quickly
in succession, or longer as the pressure in the faucet is
relieved. As the flow of water increases, this rhythmic
behavior disappears, descending into the chaotic regime.

III. APPARATUS

Our experimental setup starts with a water container
that serves as a source of water. Connected to this con-
tainer by tubing is a nozzle with a control knob, allowing
regulation of water droplet flow, which is then connected
to a pipette tip with a 1.5 millimeter diameter. Posi-
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FIG. 1. Experimental setup for observing periodicity and
chaos of water droplets with photogates

tioned vertically below the tip is a beaker, ready to cap-
ture the falling water droplets. To quantify the flow rate,
a precision scale is connected to the computer to mon-
itor the increase in the volume of water in the beaker
over time. The program LoggerPro records the change
in volume over a 180 second interval.

Two Vernier VPG-BTD photogates are positioned to
capture the presence of a water droplet in time, allowing
the monitoring of period doubling and chaos. Placing
the photogates at different positions intersecting at the
same spot on the path of the water droplet provides re-
dundancy, ensuring that if one of the sensors misses the
capture of a water droplet, the second sensor will detect
it. These photogates convert light into electrical current.
The photogate uses an infrared beam, and when an ob-
ject passes through the gate, it interrupts this beam. An
unblocked state is represented by an output signal of 5
volts, and a blocked state is represented by a signal of 0
volts. Voltage values between 0 and 5 represent partially
blocked states. An oscilloscope is connected to the photo-
gates to monitor the redundant pulses of water droplets
sensed and allow proper alignment prior to the experi-
ment. The voltage values are collected by a LABVIEW



program.

IV. EXPERIMENTAL PROCEDURE

We changed the bifurcation parameter, the flow rate
that causes period doubling and chaos, by controlling the
flowrate with the knob on the nozzle. We assessed flow
rates by monitoring the increase in water volume within
the beaker over a 180-second interval. Using the Log-
gerPro program, we recorded data at 1-second intervals,
capturing the increasing weight of the beaker over time.
To quantify the flow rate, we applied linear regression
analysis to the collected data, fitting a straight line to
reveal the rate of volume increase per unit time.

Linear Fit of flow rate

150 4 * Data
Linear Fit (RMSE = 0.04)

145 -
140

135 1 Best-fit|Line slope: m = 0.2027

Mass (g)

130

125 4

120 4

115 A

T T T T T
0 25 50 75 100 125 150 175
Time (s)

FIG. 2. A graph of the increase in the mass of water in the
beaker over a 180 second interval. The slope reveals the rate
of flow of the water droplets.

Figure 2 reveals a flow rate of 0.203 grams per second,
or 12.16 grams per minute, which is the parameter for
our 5th sample plot, refered to as pu. We organize our
Poincare plots by flowrates in grams per minute.

We programmed the LABVIEW software to collect
samples of the photogate signals at 10,000 Hz for 120
seconds, giving us 1,200,000 data points. We uploaded
the samples to Google Collab, analyzing it using Python
Pandas and Numpy libraries. We took the logical OR
operation on the signals from both photogates to deter-
mine points of detection, identifying the moments when
the droplet blocks at least one of the beams. Even if one
gate is misaligned, the OR logic can capture the event.
The time intervals between droplets were subsequently
calculated based on the number of sequential samples
that suggest a blocked state of 0 volts. As our flow-rate
increased, the number of distinct periods increased until
chaos was reached.

V. ANALYSIS

After data was collected for different bifurcation
flowrate values, the following period graphs were ob-
tained:
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Fig 2. This figure shows how the bifurcation value
changed the number of periods that our droplets had.

The inherent period doubling observed in systems tran-
sitioning into chaos is evident in our findings [3]. The ap-
parent reduction in period from 11.68 g/m to 12.16 g/m,
though less common, occurs in certain dynamic systems
[1]. This observed period doubling is indicative of the
onset of chaotic behavior. The Feigenbaum constant is
calculated as:

5= lim ‘n-1— %n—2 (1)
=00 Ap — Gp-1
Gp—1 — Ap—2
N — 2
Qp — Ap—1 ( )
~ 5.983 (3)

This value is a 21 % deviation from the expected theo-
retical value of 4.669. The variance from the expected



value is attributed to the challenging nature of precisely
determining the bifurcation parameter in our experimen-
tal setup, as well as our systematic errors detailed in the
following section.

A. Systematic errors

FIG. 3. The oscilloscope displays square pulses corresponding
to signals from the two photogates, indicating the detection
of water droplets. These pulses have a duration of around 10
milliseconds. The variations in pulse length are due to the
alignment of the photogates.

We tried to eliminate systematic errors from the align-
ment of the photogates by adjusting the sensors based

on their pulses on the oscilloscope. However, we still no-
ticed varying signal pulse lengths and staggered pulses
from the oscilloscope, such as in Figure 3. This misalign-
ment can lead to discrepancies in the timing of events
and, consequently, errors in measured time intervals. We
analyzed the cross correlation of the signals to determine
the best shift for the samples collected to align the sig-
nals. We found that across 13 trials, an average of 9
sample shifts would best align our data, which translates
to an average misalignment of 0.9 ms. This means that
on average, since we applied a logical OR to calculate
our time intervals, they are calculated 1.8 ms shorter
than the actual time. This effect translates to approxi-
mately a 2% deviation for calculated periods of .1 s and
an approximate .6% deviation from a periods of .3 s.

VI. CONCLUSION

The period doubling continued to increase until reach-
ing the chaotic regime as the parameter, the flow rate
of water droplets, was systematically increased. Al-
though the observed Feigenbaum constants did not pre-
cisely match expectations, their proximity indicates the
chaotic nature of the system.
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